当前位置:首页  »  教学资源  »  植树问题教学反思

植树问题教学反思

来源:优文网 日期:2021-10-22 分类:教学资源 浏览:加载中...
植树问题教学反思(精选30篇)

  植树问题教学反思(一):

  《植树问题》一课蕴含了许多数学思想方法,但对这些数学方法的挖掘和处理可谓“仁者见仁,智者见智”。我觉得这一课的数学思想方法主要是“化繁为简”或者说是从简单入手寻找规律,而这种方法在北师大版教材中体现得淋漓尽致,而在人教版教材的编排上可谓“若隐若现”,所以我觉得我们使用人教版教材的课堂,应当充分挖掘教材教给学生这种解决问题的策略。

  课堂教学中我安排了三个层次的探究活动,从实物操作到画线段图到类比推理,有效地突出了解决问题策略的重要性和多样性。学生在课堂上也领略到数学智慧的夺目光彩,增强了学生学习数学的兴趣和信心。经过本课的设计和实践,我更迫切地感受到数学思想和方法在学生学习和生活中的重要性,所以对数学思想和方法在课堂中落实的研究迫在眉睫。这也是当前数学课堂中存在的重要缺失,身为教研员更为向广大教师传播数学思想和方法的重要性,并提出渗透数学思想,教给学生数学方法的有效措施。

  本课中为了突显解决问题策略的多样化和完整性,我把教材中原本安排两课时完成的资料缩成一课时。并且在这一课时我把教学重点放在学生解决问题策略的学习、理解上,所以对于本课的知识点的处理上略显不足。

  植树问题教学反思(二):

  “植树问题”是人教2013版五年级上册“数学广角”的资料,教材将它分为以下几个层次:“两端都栽”、“只栽一端”、“两端都不栽”、“封闭图形情景”以及”方阵问题”等。本节课要解决的是两端都栽的植树问题,主要目标是向学生渗透一一对应的数学思想,初步感悟“化归”的解题方法,构建植树问题数学模型。设计教学时,我运用“问题导学,互动探究”的教学模式,即以问题情境为载体,进行自主学习,以认知冲突为诱因,展开合作探究,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。根据学生的认知规律,我设计了以下几个环节:

  一、观看图片,寻找数学信息,让学生初步认识间隔,感知间隔数与手指数的关系。二、以一道植树问题为载体,放手让学生自主学习,应用不一样方法解决问题,引发学生认知冲突。三、抓住课堂生成的契机,以生活中植树问题的应用为研究对象,再度质疑,引导学生合作探究植树问题的实质。四、多层次、多角度的达标测评练习,拓展学生对植树问题的认识。

  反思整个教学过程,我认为这节课有以下几点做得比较好:

  1、经过自主探索的活动,让学生获得学习成功的体验,增进学生学好数学的信心。结合学生的年龄特点和教学资料,我设计了很多孩子喜闻乐见的教学环节。例如:在问题导入时,让学生根据不完成全的应用题,对缺少条件的应当题大胆进行猜测,激发学习兴趣。再如:自主学习、互动合作这一环节中让学生选择自我喜欢的方法解题、验证“间隔数”与“棵数”之间的规律。

  2、渗透一一对应的思想方法,培养学生数学思维本事和解决问题的本事。让学生经过观察、猜测、实验、交流等活动,既学会一些解决问题的一般方法和策略又逐步构成求实态度和科学精神。

  3、注意反映数学与人类生活的密切联系。

  本节课的教学资料本来就是来自于生活,经过观察生活找出解决这类问题的规律,从而应用于生活。所以,我设计的每一环节都紧扣生活,以解决生活中的问题为主线,有目的地进行数学学习活动,使学生学得趣味,同时,增强了数学学习的应用价值。

  4、本课的练习本着由易到难,循序渐进的原则,有以下两个层次:

  (1)直接应用,解决比较简单的实际问题。在巩固练习中,我安排学生完成已知间隔数求棵数及已知棵数求间隔数的两道填空题,以及“做一做”中明白总长和间距求棵数的练习,让学生从正反两个方面出发解决简单的实际问题。训练学生双向可逆思维的本事。

  (2)现实生活中的许多不一样事件都包含与植树问题相同的数量关系,它们都能够利用植树问题的模型来解决它。如上楼梯、排队、敲钟、锯木头等,所以在后面的提高练习中,我把这些生活中常见的现象编进题目中,让学生拓宽视野,解决生活中不一样现象的“植树问题”。

  这节课的不足是过于侧重于植树问题的原理,课堂的练习密度不够,从练习中也反馈出个别学生吃不透的现象。所以今后教学时要注意把握好度,适当进行取舍,照顾好中差生。

  植树问题教学反思(三):

  《植树问题》是人教版第八册的“数学广角”的资料。在植树问题的教学中,解题不是主要的教学目的,主要的任务是向学生渗透数学思想和方法,如:数形结合、化繁为简、植树模型、一一对应和化归等数学思想方法。在与南雅小学教研同行中我执教了《植树问题》第一课时资料。现对该课作如下反思:

  1、异中求同,构建模型、解决问题。

  “数学来源于生活,而又应当为生活服务”学生在探究完两端都种的植树问题后,让学生从生活实际中的手指、教室的灯、桌子的摆放、路灯的安装、站队等问题,直观地认识生活中的许多事例看上去跟植树问题毫不相似,可是只要善于观察、分析题中的数量关系,就明白它与植树问题的数量关系很相似,从而构建植树模型。并根据植树模型,应用所学知识解决生活中的实际问题,使学生充分感受数学知识来源于生活,又回归于生活。

  2、动手操作,观察比较,发现规律。

  经过画线段图在“20米、30米、40米的小路上植树的动手操作,使课堂成为充满活力的自我空间,从而激发学生的思维,让他们进取地去探究,使学生完整的体验“植树”这一实践活动。

  从学生的展示来看,虽然得出的间隔数,棵数不相同。但经过观察比较发现:不一样中存在共性,即:两端都栽,“植树的棵数=间隔数+1”的规律。

  3、渗透思想,掌握方法,体验价值。

  著名的数学家波利维亚说过“学习任何知识的最佳途径是由学生自我去发现”。因为这种发现理解最深刻,也最容易掌握其中内在规律的联系。经过在画图求解的过程中,让学生觉得画到100米很麻烦,产生另辟蹊径的念头,引导学生得出能够先从简单的问题研究起,发现规律后再来解决复杂的问题。从而渗透了化繁为简、数形结合、建模、一一对应和化归等数学思想方法。

  在教学过程中还渗透了“猜想——化繁为简——画图验证——得出结论——应用结论”的思考方法和将复杂问题——简单问题——发现规律——解决问题的研究方法。使学生体验到“抽象问题直观化”,“复杂问题简单化”等基本策略在解决问题的过程中所发挥的重要作用和价值。

  4、分析学情,研究教材,突出关键。

  实际上,少数几个提前学习的学生掩盖了一个事实:更多的学生在学习前并不明白“间隔数”,丝毫没有研究平均分的结果是什么,只是受问题的影响,认为每隔5米栽一棵,算出来必须是栽了20棵树,再加上“一边”“两端”的“搅和”,才出现20棵、21棵、22棵等多种答案。我认为全长、间隔长和间隔数是一种“铁三角”关系,而棵数和间隔数只是“单线联系”。

  前者是主体,后者只是在间隔数的基础上,由于两端的种法不一样而进行的“微调”。所以,只注重间隔数与棵数的关系,而忽略前面的主体显然是不妥的。[由优文网Www.YouWenW.Com整理]

  在这两层关系之间,间隔数起着“桥梁”的作用。所以,教学的关键是:讲清楚为什么“全长÷间隔长=间隔数”和“棵数=间隔数+1”。

  5、教学实践,出现问题,找寻原因。

  虽然原班教师说我充分调动了学生的进取性,但我认为:由于本人性格原因和缺乏儿童语言,在调动学生的学习进取性方面还做得不够梦想。教学中,缺乏教学机智,贪多求全,不能见好就收。

  如:学生在做倒数第二道巩固题时,离下课时间还有两分钟,我为了体现练习的层次性,将最终一题(拓展题)也让学生完成,导致时间不够。

  课后一位听课教师对我说:我以为学生在做完倒数第二道巩固题,你就要进行课堂小结的,最终一题(拓展题)不出现该课也很完整。所以,在课堂艺术上我还要向同行多多学习。

  植树问题教学反思(四):

  小学生学习数学除了获得基本的知识技能,已解决实际生活及其他学科中的问题以外,最重要的就是感受与领悟数学中所蕴含的基本的丰富的数学思想,重要的数学思维方式,以解决更多的问题。所以设计本节课的教学时,研究到以下:

  1.注重数学思想方法的渗透。数学广角担负的一个重要任务就是经过相关知识的学习,感悟重要的数学思想方法,如果说数学教材中的基础知识和基本技能,是一条明显的话,那么蕴含在教材中的数学思想方法就是一条暗线。所以,在教学中注意数学思想方法的渗透,抓住教学资料中的有利因素,有意识地加以引导,使学生在潜移默化中掌握数学思想方法,领悟“化繁为简”和“一一对应”的思考方法。

  2.突出线段图的教学和学生动手操作。帮忙学生直观理解植树问题的数学模型,植树问题中最重要的数学思想就是模型思想,而如何让学生理解,从实际问题中抽象出数学模型的过程是教学植树问题的难点,为了突破这一难点,我充分发挥线段图的作用和让学生动手操作植树,来帮忙学生理解植树问题的数学模型。

  植树问题教学反思(五):

  20**年4月15日,我参加了丰都县三坝乡录像课决赛课活动。我参赛的资料是《植树问题》。《植树问题》是人教版义务教育课程标准实验教科书四年级下册中数学广角的资料。数学广角作为人教版新增的资料之一,其目的是向学生渗透一些重要的数学思想方法。教材经过现实生活中一些常见的实际问题,让学生从中发现规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。我发现单纯的用规律去解决实际生活中的植树问题,对学生有些难,所以我在课堂中重视规律更强调方法。从教学目标的设定,教学设计和知识结构分析来看,经过实践,基本上我感觉还算是比较成功的一堂课,有很多收获,感悟如下:

  这个知识点的原型是一条直线路上用不一样的间隔来栽树,得到不一样的棵树,经过数字间的归纳,得出规律性结论并应用。教材将植树问题分为几个层次:两端都种,两端不种,只种一端。在教学中,侧重于向学生渗透化归的数学思想。在我看来,我们不仅仅是让学生会熟练地解决与植树问题相关的实际问题,而应当是将此类题作为渗透学生化归思想和原型提炼方法、甚至是培养学生双向可逆思维的一个学习支点,我要做的就是借助资料的教学发展学生的思维并提升思维的本事,经过课堂结果来看,还是取得了必须成效。

  一、教学设计有深度、有厚度

  教学设计分两条线走:一条线以构建学生知识结构为线索,使学生对植树问题的认识经历了“生活问题---猜想验证---建立模型”不断数学化的过程,较好的实现了由生活中的具体问题过渡到相应的“数学模式”,为上升到更抽象的数学高度奠定了基础。然后又让学生运用模型解决问题,把数学化的东西又回归生活,也让学生再一次体验数学与生活的紧密联系。另一条线以渗透数学思想方法为线索。对于植树问题的探究,不仅仅让学生经过画线段图的方式,自主探究、小组合作、寻找、掌握等模式,并且结合线段图让学生理解了为什么两端都要种时,棵树要比段数多1,多的1指的是哪棵树。让学生不仅仅要知其然,还要知其所以然。

  二、敢于放手让学生去探究,体现学生的主体地位

  整堂课,我都是让学生经过自主探究,小组合作,汇报交流而得出结论。是他们自我总结出来的规律,而不是教师给他们灌的。因为我明白学生才是学习的主体,学习的主人。在那里为了便于研究,我把例题稍作了改动,原先是20米,每隔5米植一棵,我改为12米,每隔3米植一棵。(因为上这节课之前我试上过几次,学生画20米就画的20厘米,本子不够长。所以我就作了调整。)我把这一个单元的资料拿到这一节课来教学(三种植法),让他们小组讨论帮组设计植树方案。这个时候在组内就产生了争议,我不怕他们争论。有的事情就是要越辩才越明。我觉得学生在争论是好事。还有教师点拨时指出了段数就是间隔数(因为在试上时我说间隔数有部分学生不理解,我说段数学生都明白,所以这次教学时我把间隔数改成了段数)。

  三、关注拓展和应用

  植树问题在现实中的应用有很多,我们不但要讲清楚,辨析出由于路线不一样,植树要求不一样,路线被分成的段数和植树棵数之间的关系就不一样,比如安装路灯,比如切割,比如上楼梯,比如敲钟,比如锯木头等等,掌握了以后都能够用植树问题的模型来解决它,所以在教学设计的时候,充分研究不一样的题目,并不断提出变式的要求。

  四、教学中,我认为以下几点要改善:

  1、由于这节课充分展示多媒体对教学的辅助作用,所以容量比较大,有个别学生吃不透,对教材的梳理上还要学会取舍,照顾好中差生。

  2、除非题目中出现很明显的两端都种,否则学生不大会主动确定属于哪一类植树问题。

  3、解决问题时,审题不够谨慎,容易忽略两边或者两端这样的词语。

  4、教师对课堂的生成问题处理还不够灵活。

  5、对学生的评价这块还显得本事不足。

  6、普通话也有待提高。

  总之,一节课下来,发现自我真的还有那么多的不足之处,并且这些不足还不是一时半会能解决的。反思自我,今后还应加强学习,学习理论知识,学习优秀课例,异常是应针对自我的不足之处,运用与实际教学中。期望能经过自我的一点一滴积累和改善,提高自我的业务水平和调控、处理课堂生成的本事。期望不久的将来,能看到令自我满意的自我。

  植树问题教学反思(六):

  “植树问题”教材将植树问题分为几个层次:两端都种、两端不种、只种一端及封闭图形。

  我设计了以下几个环节。

  一、经过课前活动,以大家都熟悉的手为素材,从让学生初步认识间隔,感知间隔数与手指数的关系。

  二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。

  三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。

  四、多角度的应用练习巩固,拓展学生对植树问题的认识。

  反思整个教学过程,我认为这节课有以下几点做得比较好:

  一、创设浅显易懂的生活原型,让数学走近生活。

  课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下头的学习作了铺垫,同时也激起了学生的学习兴趣。

  二、注重学生的自主探索,体验探究之乐。

  生活情景图引入后出示实例图示,引导学生在观察、点数形象图形后进行填表,发现两端植树时棵树与间隔数之间的关系。当学生对实物图有了清晰的认识后,教师将形象的图形抽象成线段图,让学生在脱离实物图后,依然能够发现棵树与间隔数之间的关系。在电脑演示中学生直观的体会到了植树问题中相关的量,在观察思考后学生则进一步验证了棵树与间隔数之间的关系。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。

  这节课充分利用了多媒体设备,所以课堂容量较大,可是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。

  植树问题教学反思(七):

  经过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

  解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着必须的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不一样、植树要求的不一样,路线被分成的段数(间隔数)和植树的棵数之间的关系就不一样。

  在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵,等等,它们中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。在植树问题中“植树”的路线能够是一条线段,也能够是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。本节课着重研究直线上植树的情景。

  植树问题教学反思(八):

  《植树问题》是智慧广场中的资料,主要是向学生渗透有关植树问题的一些思想方法,经过现实生活中一些实际问题,让学生发现规律,然后再用发现的规律解决生活中的一些实际问题。植树问题分为两端都栽、两端都不栽、一端栽一端不栽三种情景。本节课教学的是植树问题中的第一种情景,即两端都栽的问题。反思整个教学过程,我认为有以下几点做得比较好:

  一、关注学生的学习起点

  学生是数学学习的主人,教师作为学生学习的组织者、引导者与合作者,应及时关注学生学习的起点。在教学过程中,我经过对五指的手指个数与手指缝之间关系的探究,在直观形象的手指演示中让学生初步感知棵数与间隔数的关系。本课伊始,我首先出了个谜语:“一棵树,五个叉,不长叶子不长花,能写能做还会画,就是不会开口讲讲话。”随后让学生观察自我的手指,引导学生得出:五个手指有4个间隔,4个手指有3个间隔,3个手指有2个间隔,2个手指有1个间隔。使学生清楚地看出手指的个数与间隔数之间是相差1的。接下来又经过做快速问答的游戏,使学生加深认识了植树问题中间隔数和棵数的关系,为下头的学习做了铺垫,同时学生的学习兴趣也被激发了起来。由此可见,我们在教学中必须要关注学生的学习起点,放低起点,这样才会收到事半功倍的效果。

  二、注重学生的自主探索

  在探索新知这个环节,是这样设计的:

  欢乐探究:

  在20米长的小路一边等距离植树,两端要栽,能够怎样栽树苗?

  设计了一个表格

  全长(米)间隔(米)线段图间隔数(个)棵数(棵)

  1、把上表补充完整。

  2、“两端要栽”的时候,我发现:棵树比间隔数

  我能用等式表示棵数与间隔数之间的数量关系:

  棵数=

  学生经过自我动手画图,很快就发现了其中蕴含的规律。展示环节,我让展示小组的学生利用展示台给大家展示,学生指着自我画的线段图边讲解边说,让其他同学清楚地看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。改变间距后,段数和棵数相应也发生了变化。

  经过自学,小组交流,小组展示,学生很容易的得出了在两端栽的情景下棵数与间隔数之间的关系是:总长÷间距=间隔数,棵数=间隔数+1。整个学习过程都是学生自主探索的结果。学生把整个分析、思考、解决问题的过程全部自我展示了出来。在这一过程中,学生进取思考,大胆尝试,主动探索,也体验到了成功的喜悦和学习的乐趣。

  三、关注植树问题模型的拓展和应用

  规律总结出来了,我并没有就此罢手,而是让学生找生活中的类似现象,使学生认识到生活中的许多事例看上去跟植树问题毫不相干,可是只要善于观察题中的数量关系,就明白它与植树问题的数量关系很相似,如计算公共汽车从起点站到终点站所行的距离及爬楼梯问题。求路边的电线杆、排座位、在路两旁安装路灯、插彩旗等等,目的是让他们利用所学植树问题的知识来解决生活中的数学问题,使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的应用价值。

  四、渗透数形结合的思想,培养学生借助图形解决问题的意识

  数形结合是数学解题中常用的思想方法,数形结合的思想能够使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。本着这个思想我在让学生理解间隔数与植树棵数之间的规律时,我采用数形结合的方法——画图解决问题,从而逐步提高学生解决问题的本事。练习环节,我还设计了我们平时熟悉的钟声,让学生听钟声,在听到基础上用线段图画出钟声和他们之间的时间的间隔。学生在听、画之后初步感受了间隔数和棵数之间的关系。同时,经过画图,降低了此题的难度。再如:在解决锯木头问题时,经过成语“一刀两断”引出“一刀两段”,结合线段图,清楚地使学生理解间隔数总是比端点数少,使用数形结合的方法,在增加学生学习兴趣的同时,植树中棵树和间隔数之间的关系便迎刃而解。

  存在问题:

  把学生估计过高,以为只要学生弄懂了棵数与间隔数之间的关系之后,解决植树问题就应当没多大的问题了,但事实出乎预料,因为例题是给了全长和间距求棵树,但“做一做”却是给了间距和棵树求全长,属于逆向思维,所以,有好多同学就不知从何下手了,导致出错很多。其实就是在发现规律与运用规律间缺少了链接,应加强对规律的扩散教学,比如:得出规律时,能够总结一下“间隔数=棵数-1,路长=间隔数×间隔长”等知识的扩散。

  植树问题教学反思(九):

  一、学生的原有认知点在哪里?

  植树问题,看是简单的问题,其实“很难”。为什么呢?那就是在以往的教学中,学生是没有接触这样的数学问题的。如:“间隔数”。对于学生来说完全是陌生的。而在教师看来,这些植树问题的相关知识点是现实生活中的,是学生熟悉的事物,其实不然。就象锯木头,“一根木头,锯3次,锯成了几段?”“用手夹乒乓球,每两个手指夹一个,可夹几个?”“班上原先8个女同学表演节目,此刻每两个女同学中间站一个男同学,有几个男同学?”等等。像这样的素材是学生熟知的,但问起来,学生就觉得是脑筋急转弯似的,老会错,但这些情景学生喜欢,简单,可操作性强,只要在课前谈话、游戏时稍加点拨,学生就很容易理解“间隔数”了。

  二、教师,你带直尺来了吗?

  教师在这节课努力创设了探究情景,十分注意学生的学习过程,经过猜想、验证,使学生经历和体验“复杂问题简单化”的解题策略和方法,建立数学模型,渗透化归思想。但最终的结果也是很重要的。在今日的课堂中,教师还还高估了学生画线段图的本事。加上在第二次探究时给学生过多的要求,诸多因素影响了学生的探究出结果。

  植树问题教学反思(十):

  《植树问题》资料包括两头植、两头都不植、封闭情景下的植树问题(一头植和一头不植)这三种情景。在解决植树问题的过程中,要向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想.模型思想,同时使学生感悟到应用数学模型解题所带来的便利。

  一、自主探索,培养学生数学思维本事。

  课前创设情境让学生欣赏美丽的风景,引导学生明确要学习的资料,紧之后引出例题,探讨植树问题,不规定间距,同时改小数据,将长度改成20米。

  让学生在开放的情景中,突现知识的起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。

  经过“以小见大”数形结合来找规律加以验证,然后以例题展开,让学生动脑、动手反复验证,最终总结出:段数+1=棵数。

  二、拓展应用,反映数学与生活的密切联系。

  “植树问题”通常是指沿着必须的路线,这条路线的总长度被“树”平均分成若干间隔,由于路线不一样、植树要求不一样,路线被分成的间隔数和植树棵数之间的关系就不一样。

  在现实中有着广泛的应用价值。在学生已经自主地寻找到植树中前两种的规律后,我适时的提出在我们的生活中有没有类似植树的情景呢?

  经过学生的举例,让他们进一步体会,现实生活中的许多不一样事件都包含与植树问题相同的数量关系,它们都能够利用植树问题的模型来解决它,感悟数学建模的重要意义。我并没有就此罢手,而是让学生找找生活中的类似现象,如栽电线杆,排座位,安路灯,插彩旗等,再一次让学生运用规律解决形式各异的生活问题,使数学知识运用于生活。

  三、数形结合,培养学生借助图形解决问题的意识。

  我让学生根据示意图用算式来表示出植树的棵数,学生在列式计算的过程中,经过直观的观察初步感知三种情景:两端都栽“棵树=间隔数+1”,只栽一端“棵树=间隔数”,两端都不栽“棵树=间隔数-1”。

  之后,再引导学生用“一一对应”的思想,举起左手,看指头有五个,间隔就是四个,明白植树问题的道理与此相似,再举起右手比划比划,分析植树问题三种不一样的情景,即“两端都栽”“只栽一端”与“两端都不栽”,从而真正理解这三种情景下,棵数与间隔数的关系。初步理解间隔数与植树棵数之间的规律时,我采用数形结合的方法——画图解决问题,从而逐步提高学生解决问题的本事。

  本节课的不足之处:一是学生没有完全放开,思维还不够活跃;二是对课堂的生成问题处理还不够灵活,不能进行很好的利用。

  植树问题教学反思(十一):

  课前,我利用一根绳子按必须的间隔把小棒(当小树)捆在上头,结成一个封闭图形。课开始让学生观察封闭图形的植树问题,这时我不失时机的从一棵树那里剪开,这时学生露出了奇怪的眼神,同时我提出这属于线段上植树问题的哪一种情景,学生很快就喊出:一端种另一端不种:棵树=间隔数。课中利用形象的课件出示了生活中各种各样封闭图形的植树问题,学生简便的获取了新知。(课始我设计的目的加深学生理解封闭图形的植树问题)

  课后,我给学生了一个问题:我班有55名学生,如果要站成一个最大的正方形方队,这个正方形方队最外层一共有几人?方队一共有几人?学生纷纷开始讨论,七嘴八舌找我讨论,我没有及时告知他们答案,而是让体育委员把学生带到操场上实际的站队,让他们自我找到了答案。

  这个单元的学习到达了我预期的效果,虽然本单元教学有点难掌握,但只要教师注意激发学生的兴趣,就能突破难点。

  植树问题教学反思(十二):

  本节课旨在经过学生的学习活动让学生发现数学规律,建立植树问题的数学模型,理解“棵数”与“间隔数”的关系,从而发展学生的数学应用意识,培养学生主动探究和合作学习的精神,最终掌握植树相关问题的解决办法。

  总的来说,本节课学生参与面广,进取性和主动性得到充分发挥,课堂效率也高,较好地展示了动手操作、合作学习的优势,主要体现了以下几点:

  一、动手操作、合作交流、探究规律:

  本节课,学生以小组为单位,利用手中的学具设计不一样的植树方案,有利于学生发挥小组交流合作的优势,学生在相互的表达和倾听中促使思路的清晰化,促进知识结构的构成,提高了学生的思维水平,完善了学生的认知结构。

  二、练习的设计独特、新颖、有梯度:

  本节课的教学我既注重教学过程,也注重教学效果。在练习环节中,我设计了有梯度的练习,体现了分参次教学。同时我还从不一样的角度引导学生运用所学知识解决一些生活中常见的植树相关问题,有效实现了生活问题数学化、数学问题生活化的目的。

  由于练习的解答采取竞赛的方式,充分调动了学生学习的进取性,优化了课堂教学效果,大大提高了课堂教学效率。

  三、充分体现学生的主体作用及教师的主导作用:

  本节课,我经过引导学生动手操作——交流讨论——得出结论——应用结论,充分体现学生的主体作用,教师只是做了适时的点拨。

  植树问题教学反思(十三):

  1、经过自主探索的活动,让学生获得学习成功的体验,增进学好数学的信心。

  结合学生的年龄特点和教学资料,我设计了很多需要学生自主探索的活动。例如:在创设情境、导入新课的第2个小环节中“如果你是园林工人,你会怎样种?”,让学生自主探索出在一条路上植树时,有3种不一样的情景:“两端都种”“两端都不种”“只种一端”;再如:在自主探究、建立模型这一环节中让学生自定路长和间距,经过画图的方法验*“间隔数”与“棵数”之间的规律。又如:在最终联系实际,综合练习时,我放手让学生自选习题进行解答。

  2、渗透“以小见大”的数学思想方法,培养学生数学思维本事和解决问题的本事。

  “授人以鱼不如授人以渔”,新课程理念有个更具“与时俱进”的显著特点是对渗透数学思想方法的关注。在本课的教学过程中,要充分利用学生想检验大数目时遇到困难,可引导经过“以小见大”来找规律加以验*,让学生经过观察、猜测、实验、推理与交流等活动。从而不失时机给学生渗透常用的数学思想方法,为将来的后续学习积累更丰富实用的思想经验。

  教学过程是这样的:在学生已经掌握了两头都植的规律的探究方法后,让学生分组自主寻找两头都不植的规律,学生经过自我动手画,自我整理表格,很快就发现了其中蕴含的规律,产生了很强的成功感,同时也有了一份自信,极大的调动了学生进取*。

  3、关注植树问题模型的拓展和应用,注意反映数学与人类生活的密切联系。

  植树问题教学反思(十四):

  1.教学设计力求有深度有厚度。《植树问题》这一课的核心不是掌握公式,套用公式解题,而是让学生在经历数学建模的过程中,体验一一对应,数形结合,化繁为简的重要思想方法。

  教学设计分两条主线走:一条以构建学生知识结构为线索,使学生对植树问题的认识经历了“生活问题--猜想验证--建立模型”不断数学化的过程,较好的实现了自由生活中的具体问题过渡到相应的“数学模式”。然后学生运用模型解决问题,把数学化的东西又回归生活,再一次体验数学与生活的紧密联系。另一条主线以渗透数学思想方法为主线。不仅仅让学生在体验中感悟化繁为简的思想,同时利用画线段图的方式,感悟一一对应,数形结合的思想。从而理解棵数与间隔数的关系,不仅仅知其然还要知其所以然。

  2.大胆放手,让学生去探究去思考。在学生自主提出问题后,进取主动地进行大胆猜想,然后经过自主探究、合作探究等不一样形式进行探究验证,整个课堂教师则引导学生在质疑、猜想中动手操作验证;在操作中不断思考;在思考中汇报;在汇报中比较;在比较中反思;在反思中总结。从而建立一个完整的植树问题数学模型。

  本节课还存着许多问题:

  1.环节处理不够恰当,造成时间的把控上不够精准。整节课感觉有点赶时间,走流程,重点知识不突出。比如在对“间隔数”如何来求上花的时间有点少,有些学生对如何快速求出“间隔数”还存在着疑惑。

  2.由于没有展台,以至于不能清晰地展示学生的作品,让其他同学和听课教师不能直观地看到数据,让验证更具有说服力。

  在今后的教学中,期望能透过自我一点一滴的积累和改善,提高自我的业务水平和调控、处理课堂生成的潜力,在不久的将来,能看到更棒的自我。

  植树问题教学反思(十五):

  一、遇到的问题:

  《植树问题》是三年级第一学期教材数学广场中的教学资料,也是二期课改中数学拓展*的知识。是以往无数次被搬上舞台演绎出了许多经典课例。所以在教学准备阶段,我认真地研读了很多课例,发此刻诸多课例中,存在着这样一个共同的特点:任课教师都异常重视关于“植树问题”的三种不一样类型的区分,即所谓的“两端都种”“只种一端”与“两端都不种”。普遍采用了“学生*探究(或分组探究)、反馈交流、教师总结”的模式进行教学。并将“三种情景”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”要求学生牢固地掌握,从而能在应对新的类似问题时不假思索地直接加以应用。可是在这些课例的反思中,我又发现了一个共同的特点,很多学生能找到规律但不能熟练地运用规律,不能把植树问题的解决方法与生活中相似的现象进行知识链接。

  二、第一次试教分析:

  我根据教学资料的特点和学生的实际情景,在探究两端都植的规律时安排了动手*作,想经过引导学生进取参与,使学生在多种形式的教学活动中,加深对植树问题棵数和间隔数之间的关系的认识与理解。活动的设计是这样的:

  出示一道开放*的题目:一条公路长()米,每隔5米植一棵(两端都要植),需要多少棵?让学生自我确定这条路的长度,

  从而探究出两端都要植树时的间隔数和棵数之间的关系,要求是这样的:设计:全长()米,每隔5米,有()个间隔,种()棵树让学生*思考,画线段图,填表,汇报。本以为自我设计的教案研究到了学生的生活经验,结合生活实际,重视了数学思维培养,方法的渗透,是可行的,学生们应当是能够掌握的。可是在实际的教学过程中,在“植树”时还是跃跃欲试的学生们到“探究规律”时一个个都像被打败公鸡,毫无斗志与反应。勉强参与的总是那几个平时成绩比较优秀的学生。看来这样的设计无法顾及全体学生的发展。没有了学生的主体参与,何来思维的培养,主题的建构呢?我开始反思:为什么学生不能找到简单植树问题的规律呢?为什么缺乏参与的进取*呢?学生一脸的茫然。经过反复的思考,我想到了我设计的探究活动有必须的问题,对于学生来说太抽象,太难了,自我确定长度时,要研究到平均分还要分完,只给学生一条线段,他们不明白从何下手。我请教有经验的教师们,自我又反复琢磨,调整了自我的教学过程,从简单入手的思想,使这节课主线更清晰明朗了,即从生活中抽取植树现象,并加以提炼,然后经过猜想,验*,建立数学模型,再将这一数学模型应用于生活实际。这样能灵活构建知识系统,注重教学资料的整体处理。

  又能活用教材,对教材进行了整合和重构,让资源启迪探究。激发了学生探究的欲望。让学生比较系统地建立植树问题的三种情景,即两端都植;两端都不植;封闭情景下的植树问题(一头植和一头不植)。

  三、第二次试教分析:

  我把目标制定为:知识*目标:利用生活中的问题,经过动手*作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。过程*目标:进一步培养学生从生活实际问题中发现规律,应用规律解决问题的本事。

  为了让学生掌握物体个数与间隔数的关系,课前我布置学生去数一数路灯排列有什么规律,初步感受物体个数与间隔数的关系,这样首先让学生在生活中学会有所观察,有所思索,有所实践。既能激起学生强烈的求知欲,做好课前准备,又能体会到数学知识在生活中的实际应用价值。在教学过程中,我创设情景聘请学生做环境设计师,说明学校南墙边有一段40米的小路,学校准备在路的一侧种树,按照每隔10米种一棵的要求设计一份植树方案,并说明设计理由,择优录用。我先请学生估计产生不一样的意见,此时需要验*,怎样验*,学生想出不一样的办法,给学生动手*作的时间和空间,让学生在*作中感悟,学生经过摆一摆,数一数,得出结果。学生的思绪一下打开了,最终出现了三种方案:第一种,两头都种,有5棵数。这样能够让学校有更多的绿*。第二种有3棵,头尾都不种。因为节俭成本。第三种有4棵。种头不种尾;或者相反;又或者研究树的实际生长空间不够,成本既不太高,绿*又不会太少。在这个环节,学生在实际*作中初步感受植树问题的特征,这个时候我利用模具加以归纳、总结,构成规律。学生靠自我主动、*地完成所学任务,发现规律,发现特点,找到窍门,感到十分高兴,记得牢固。

  可是问题又就出现了,在和学生开始列举生活中有关植树的问题的事情,然后运用学生自我发现的规律,解决**旗,仪仗队队伍的长度、走楼梯、锯木头等问题。为什么学生能够找到简单植树问题的规律“间隔数+1=棵数”“间隔数-1=棵数”却无法运用呢?在发现规律与运用规律间缺少了怎样的链接?

  四、第三次试教分析:

  首先,创设了情境,学生仅凭一次体验是不可能全部到达继续建构学习主题的水平。不仅仅需要向学生供给多次体验的机会,并且还需要创设能够激发学生共鸣的情境。在举例过程中,比如手指之间的点段,座位之间的位置关系,并且还利用了“一*两断”来说明锯木头的问题,让我惊喜不已。学生真正的生活经验是他们身边熟悉的事物,这时的学生才会真正感兴趣,才能够产生共鸣,才易激发探究的欲望,让活动化的数学学习有个坚实的基础。

  其次,书上的例题直接给出了植树的图片,棵数、段数一目了然,不利于学生进行*的、深入地思考。如果在动手之前,再补充一句:根据题目要求,你想怎样种?有几种种法?画一画线段图或者用手边的东西代替树摆一摆。再出示3种植法的图片,学生*实自我的研究是全面的。这样的设计会使学生的印象更加深刻。借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有凭借,才能使得数学学习的思想方法真正得以渗透。

  植树问题教学反思(十六):

  植树问题”原本属于经典的奥数数学资料,新课程教材把它放在了四年级下册的“数学广角”中让所有的学生学习,说明这一教学资料本身具有很高的教学思维含量和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。从学生的思维特点看,三、四年级学生仍以形象思维为主,但抽象逻辑思维本事也有了初步的发展,具备了必须的分析综合、抽象概括、归类梳理的数学活动经验。教学时能够从实际的问题入手,引导学生在分析、思考问题过程中,逐步发现隐含于不一样的情形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决问题中的应用。

  反思整个教学过程,我认为这节课在以下2个方面处理得比较好:

  1、在探究过程中感受数学

  课程标准异常强调:数学活动必须向学生供给充分的从事数学活动的机会,帮忙他们在自主探究和合作交流过程中获得广泛的数学活动经验。所以在本节课中,我先让学生自我动手画画需要种几棵树,然后在小组内交流总结发现规律。学生学到了解决问题的方法,并获得了更深层次的情感体验。

  2、素材来源生活

  在本节课的设计中,我注重数学与人类生活的密切联系。新授环节也是以日常所见的种树问题引入,巩固练习之后,我以图片的形式让孩子们了解生活中与植树问题相似的现象,让学生进一步体会,现实生活中的许多不一样事件都内含与植树问题相同的数量关系,它们都能够利用植树问题的模型来解决它,感悟数学建模的重要好处。

  我感觉这节课的不足之处有以下几点:

  1、针对学生能够找到简单植树问题的规律“棵数=间隔数+1”却无法运用这个规律求路长的问题,因为学生的认知起点与知识结构逻辑起点存在差异。以为学生能发现“棵数=间隔数+1”就能解决问题了,实际上这只是部分学生具备了继续学习的本事,这恰恰导致了能找规律却不会用规律。也就是在发现规律与运用规律间缺少了的链接,我要加强对规律的扩散教学,比如:得出规律时,能够说说“间隔数=棵数-1,路长=间隔数X间隔长”等等知识的扩散。

  2、把握每一个细节,问题即时解决,站在学生的角度去思考问题。比如:学生的质疑,间隔长和间隔数之间的区别,两端和两边的区别,应当研究学生的知识构建,学生的知识认知一般是在具体情景中经过活动体验而自主建构的。没有体验,建构就会显得很抽象。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部到达继续建构学习主题的水平。我能够利用线段图或者实例来帮忙学生学习。让学生有能够凭借的工具,借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。

  经过这一次磨课,我期望能透过自我一点一滴的积累和改善,提高自我的业务水平。

  植树问题教学反思(十七):

  植树问题是新人教版新课程标准实验教材五年级上册第七单元的资料。大家都明白,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。

  植树问题教学侧重点:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本单元的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。经过教学,不仅仅是向学生渗透某种数学思想方法,并且借助资料的教学发展学生的思维,提高学生必须的思维本事。

  反思整个教学过程,我认为这节课有以下几点做得比较好:

  一、创设浅显易懂的生活原型,让数学走近生活。

  创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生进取主动地投入到数学活动中。课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下头的学习作了铺垫,同时也激起了学生的学习兴趣。

  二、注重学生的自主探索,体验探究之乐。

  体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生供给多次体验的机会,为学生创设了一种*、宽松、*的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮忙理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。所以,在教学过程中,我注重了对数形结合意识的渗透。教学中我先激励学生自我做设计师,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就

  是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧之后提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多

  1。最终按照教材要求应用发现的规律来解决前面的植树问题:100米长的小路,按5米能够平均分成20段,也就是共有20个间隔,而栽树的棵数比间隔数多1,所以一共要准备21棵树苗。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。

  三、利用学生资源,加强生生合作

  学生的认知起点与知识结构逻辑起点存在差异。生生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示与合理的利用。在设计植树方案这一环节上,学生将间距定为1米、2米、4米、5米、10米,体现了思维的多样*。这单元教学充分利用了多媒体设备,所以课堂容量较大,可是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。

  本单元教学不足的是:

  一是没有举一反三的让学生进一步理解。

  二是怎样让学生理解的更透彻,解题思路更清晰。功夫下的不深。今后教学改善措施:

  1、深钻教材,上课注重中差生,做到举一反三。

  2、寻求学生最能理解的教学方法去教学。

  3、课前必须要备学生。充分了解学情。

  植树问题教学反思(十八):

  《植树问题》是人教版新课程标准五年级上册“数学广角”的资料,这一单元主要资料就是植树问题,植树问题通常是指沿着必须的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不一样、植树的要求的不一样,路线被分成的段数(间隔数)和植树的棵数之间的关系就不一样。这样就把植树问题分成了三种情景,即:(1)植树的棵数=间隔数+1;(2)植树的棵数=间隔数;(3)植树的棵数=间隔数-1。

  在这节课我们学习的是第一种情景,在教学中,我不但注重了学生动手操作本事的培养,同时也让学生感受到了数学来源于生活,也应用于生活的道理。比如:用排队人数与间隔数的关系抽象出植树问题中棵数与间隔之间的关系,既趣味味性又贴近学生的生活。教材在编写时,都是给出路的长度,求间隔或棵数,但在练习时,很多题都是间隔和棵数,求路的长度。避免上节课出现问题的同时我还针对上节课出现的问题对学生提出质疑,让生生互评或师生互评,重点表扬大部分学得好的同学使每一个学生获得参与的机会、培养学生探究精神体验成功的感觉,增强学生的自信心和荣誉感,使他们更加热爱数学。

  本节课的主要目标是向学生渗透复杂问题从简单入手的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。所以在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的方法,以此为基础,根据学生的认知规律,我设计了以下几个环节:

  一、经过课前活动,以春季植树为素材,从让学生初步认识间隔,感知间隔数与棵树的关系。

  二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。

  三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。

  四、多角度的应用练习巩固,拓展学生对植树问题的认识。反思整个教学过程,发现单纯的用规律去解决实际生活中的植树问题,对学生有些难,所以我在课堂中重视规律更强调方法,注重学生获取知识过程的体验是学生从旧知识向隐含的新知识迁移的过

  程。教学中,我创设了情境,向学生供给多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮忙理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。

  所以,在教学过程中,我注重了对数形结合意识的渗透。直接例题导入,引导学生能够画图模拟实际栽树,经过线段图的演示,让学生充分理解“间隔数”与“植树棵树”之间的关系,就此向学生渗透复杂问题简单化的思想,让学生自主选择短距离的路用画图的方式得出结果。这样把学习的主动权交给学生,发展了学生的潜能,培养了学生的实践本事和创新意识。可是我感觉在本节课的教学活动中还有不足的地方:

  其一,上课前准备不充分,那就是我把学生估计过高,我以为只要学生弄懂了棵数和段数之间的关系之后,解决植树问题就应当没多大的问题了,但事实出乎我的预料,因为有一部分学生明白了全长和间距不会求段数,我以为这是学生早已经学过的并且经常用到的,所以没异常的引导,导致了学生无法下手。

  其二,在时间的分配上我前松后紧,在规律的寻找和简单应用中花费的时间有点长,以致后面的练习很仓促。

  其三,条理不够清晰,简直成了教师在唱独角戏,学生参与面不广,没有很好地完成教学任务。

  在今后的教学中我还要全面、深入的了解学生,充分做好多个方面的准备。

  植树问题教学反思(十九):

  反思整个教学过程,发现单纯的用规律去解决实际生活中的植树问题,对学生有些难,所以我在课堂中重视规律更强调方法,注重学生获取知识过程的体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生供给多次体验的机会,为学生创设了一种*、宽松、*的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮忙理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。所以,在教学过程中,我注重了对数形结合意识的渗透。直接例题导入,引导学生能够画图模拟实际栽树,经过线段图的演示,让学生充分理解“间隔数”与“植树棵树”之间的关系,就此向学生渗透复杂问题简单化的思想,让学生自主选择短距离的路用画图的方式得出结果。这样把学习的主动权交给学生,发展了学生的潜能,培养了学生的实践本事和创新意识。

  可是我感觉在本节课的教学活动中,师生间的沟通交流上还有待于进一步加强,有时过高的估计学生的学习基础和理解本事,造成站位过高的局面。今后的教学中要全面、深入的了解学生,充分做好更方面的准备。

  植树问题教学反思(二十):

  这节课中我教学的是植树问题中的一种情景,即两端植树问题。反思这节课,我是有喜也有忧。喜的是学生学习比较投入,气氛比较活跃,大多数发言进取,悲的是学生的学习效果没有到达我预期的目标,中等以上的学生掌握的很简便,但基础较差的学生掌握的不太好,还没真正到达学以致用目的。

  为了让学生进取主动地投入到数学活动中,我创设与学生的生活环境和知识背景密切相关的学生感兴趣的学习情境。我选择猜谜语的方式,之后以学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,首次清晰地看出手指的个数与空格数之间是相差1的。然后让他们观察教室里那里有间隔,最终举出生活中那里存在间隔,让学生听钟声,在听到基础上用线段图画出钟声和他们之间的时间的间隔。学生在看,听,画之后初步感受了间隔和棵数之间的关系。这一系列的创设使学生体会到,只要处处留心用数学的眼光去观察宽阔的生活情境,就能发此刻平常事件中蕴涵的数学规律。

  学生在分组合作寻找规律的时候表现的很简便。在学生的进取性调动起来后,便出示生活中的植树问题,让学生分组自主解决,在这个环节中,我让学生自主选择自我喜欢的方法解决问题。学生经过自我动手画线段、摆跳棋,完成我给出的表格,很快就发现了其中蕴含的规律,产生了很强的成功感,同时也有了一份自信,极大的调动了学生进取性。在此基础上,我适时的提出要同学们帮忙解决一个问题,这样既培养了学生的数学应用意识,又让学生感受到数学与生活的密切联系。植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,我并没有就此罢手,而是让学生找找生活中的类似现象,如栽电线杆,排座位,安路灯,插彩旗等等,在学生从具体生活中抽象出数学现象后,又再一次让学生运用规律解决形式各异的生活问题,使数学知识运用于生活,使学生深深地体会到数学的价值与魅力。整节课,大多数学生的思维表现的很活跃。

  但这节课也有我颇感不足的地方,那就是我把学生估计过高,我以为只要学生弄懂了棵数也段数之间的关系之后,解决植树问题就应当没多大的问题了,但事实出乎我的预料,因为有一部分学生明白了全长和间距不会求段数,我以为这是学生早已经学过的并且经常用到的,所以没异常的复习,导致了基础较差的学生无法下手。其二在时间的分配上我前松后紧,在规律的寻找和简单应用中花费的时间有点长,以致后面的练习很仓促。

  植树问题教学反思(二十一):

  在这节课的教学中,我不但注重了学生动手*作本事的培养,同时也让学生感受到了数学来源于生活,也应用于生活的道理。比如:用排队人数与间隔数的关系抽象出植树问题中棵数与间隔数之间的关系,既趣味味*又贴近学生的生活。

  教材在编写时,都是给出路的长度,求间隔或棵数,但在练习时,很多题都是间隔数和棵数,求路的长度。避免上节课出现问题的同时我还针对上节课出现的问题对学生提出质疑,让生生互评或师生互评,重点表扬大部分学得好的同学使每一个学生获得参与的机会、培养学生探究精神体验成功的感觉,增强学生的自信心和荣誉感,使他们更加热爱数学。

  本节课的主要目标是向学生渗透复杂问题从简单入手的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。所以在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的方法,以此为基础,根据学生的认知规律,我设计了以下几个环节:

  一、经过课前活动,以春季植树为素材,从让学生初步认识间隔,感知间隔数与棵树的关系。

  二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。

  三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。

  四、多角度的应用练习巩固,拓展学生对植树问题的认识。

  植树问题教学反思(二十二):

  本单元经过现实生活中一些常见的实际问题,借助线段图等手段让学生从中发现一些规律,抽取其中的数学模型,然后再用发现的规律來解决生活中的简单实际问题。植树问题通常是指沿着必须的路线植树,这条线段的总长度被树平均分为若干段(间隔),由于路线的不一样、植树的要求不一样、路线被分成的段数(间隔数)和植树的棵树之间的关系也就不一样。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、锯木头、架设电线杆等。这些问题中都隐藏着总数与间隔数之间的关系。

  在植树问题中,植树的路线能够是一条线段,也能够是一条首尾相接的封闭曲线如圆形。即使是关于最基本的一条线段上的植树问题,也可能有不一样的情形。如两端都要载,一端栽另一端不栽,两端都不栽。而在封闭曲线上的植树问题能够转化为一条线段上的植树问题中的'一端栽另一端不栽的情景。

  成功之处:

  分类教学,抓住教学重难点,避免出现知识的空档。在教学中,我经过教学例1的两端都栽的情景。这类问题,学生对于求棵树比较容易理解。可是对于在公路的两旁栽树,学生往往容易出错,所以在教学的过程中,多出一些在两旁栽树的情景,让学生能够注意。另外,在这个教学中还注意让学生逆向思考,如:在学校门前小路的两边,每隔5米放一盆菊花(两端都放),从起点到终点一共放了20盆。这条小路长多少米?提醒学生逆向思考问题,也就是要先求一旁小路放多少盆,即20÷2=10(盆),然后再求间隔数,即10-1=9(个),最终求小路的全长,即9×5=45(米)。经过这样的训练,能够使学生不仅仅知其然,更知其所以然,还能培养学生逆向推理的本事。学生以后再见到难题,能够借助方程顺向思考问题,也能够逆向推理思考。经过这样的训练,学生就不至于感觉数学的困难了。这个单元容易出现的题目就是敲钟问题、锯木头问题、每个角都摆花的问题,这些问题能够一类一类地教学,把每个问题夯实,再进行综合训练,效果会更好。在这些问题中,尤其类似这样的问题要注意教学,如要在三角形花坛的边上种牡丹花,每边种10棵,能够怎样种?最少需要种多少棵牡丹花?这种类型题学生就要有多种研究,一种是三个角都不种,每边种1

  0棵,需要种10×3=30(棵);第二种是只种1个角,其他两个角不种,就需要种10×3-1=29(棵),第三种是种兩个角的情景,需要10×3-2=28(棵),第四种是种三个角的情景,需要10×3-3=27(棵),经过这样的教学能够避免直接教学课本习题中的棋子问题,学生就能够弄清楚为什么要用每边的数量乘边数候后还要减4。

  在教学例1两端都栽的情景,也能够顺势教学其它情景异常是两端都不栽,除了画线段图理解之外,也能够让学生解释为什么要用间隔数减1,实际上中两都栽的情景中间隔数加1再减2,所以得到棵数等于间隔数减1。这样再教学只栽一端时,学生又能够在两端都不栽都情景下间隔数减1加1,就能够得到棵树等于间隔数,由此类推,学生更容易理解这三种情景之间的联系,不至于学一种记忆一种。

  不足之处:

  学生在学习例题时学得很好,一到接触到不一样类型的植树问题就不知所措,还是存在搞不清哪种植树问题的情景。

  再教设计:

  在教学中,还是继续采取分类教学,既注重对分类教学的讲解,还要注意逆向思维的训练。

  植树问题教学反思(二十三):

  “植树问题”通常是指沿着必须的路线,这条路线的总长度被树平均分成若干段,由于路线不一样、植树要求不一样,路线被分成的段数和植树棵数之间的关系就不一样。现实生活中类似的问题还有很多,如安装路灯、花坛摆花、站队中的方阵、锯木头、走楼梯,等等。

  教材将植树问题分为几个层次:两端都栽、两端不栽、环形情景以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。

  数学《课标》强调数学与生活的联系,在教学要求中增加了“使学生感受数学与现实生活的联系”,并且要求“数学教学必须从学生熟悉的生活情境和感兴趣的事物出发,为他们供给观察和*作的机会”使同学有更多的机会从生活中学习数学和理解数学,体会到数学就在身边,感受到数学的趣味和作用,体验到数学的魅力。

  一、设计流畅简单易懂。

  整节课设计基于本班学生实际情景,在创设情境使学生明确要学习的资料,引出例题探讨植树问题,不规定间距,同时改小数据,将长度改成20米。目的在于,让学生在开放的情景中,突现知识的起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。在那里改小数据,有利于学生的思考,主要照顾后20的学生。然后以例题展开,让学生在*作中感悟,学生经过摆一摆,数一数,得出结果。学生的思绪一下打开了,最终出现了三种方案:第一种,两头都种,有5棵数。这样能够让学校有更多的绿*。第二种有3棵,头尾都不种。因为节俭成本。第三种有4棵。种头不种尾;或者相。学生能够找到简单植树问题的规律“间隔数+1=棵数”“间隔数-1=棵数”

  二、注重实践体验探究。

  教学中向学生供给多次体验的机会,注重借助图形帮忙学生理解建构知识。在教学过程中,时刻对数形结合意识的渗透。教学中我先激励学生自我做设计,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧之后提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。最终按照教材要求应用发现的规律来解决前面自我设计的植树问题:间隔2米、4米、10米,而栽树的棵数比段数(间隔数)多1。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。

  三、联系生活拓展思维。

  有意义的学习是学生在具体情景中体验自主建构,体验和建构是学生学习的关键。体验是建构的基础,没有体验,建构就没有意义。体验是学生从旧知向隐含的新知迁移的过程。设计中,虽然创设了情景,但一次的体验不能到达继续建构学习的水平。所以,这节课我多次向学生供给体验的机会,学生经过摆一摆,数一数,得出结果。学生的思绪一下打开了,最终出现了三种方案:第一种,两头都种,有5棵数。这样能够让学校有更多的绿*。第二种有3棵,头尾都不种。因为节俭成本。第三种有4棵。种头不种尾;或者相。学生能够找到简单植树问题的规律“间隔数+1=棵数”“间隔数-1=棵数”

  画一画线段图或者用手边的东西代替树摆一摆,学生*实自我的研究是全面的。这样的设计会使学生的印象更加深刻。借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有凭借,才能使得数学学习的思想方法真正得以渗透。

  植树问题教学反思(二十四):

  一、教学设计有深度、有厚度。

  教学设计分两条线走:一条线以构建学生知识结构为线索,使学生对植树问题的认识经历了“生活问题——猜想验证——建立模型”不断数学化的过程,较好地实现了由生活中的具体问题过渡到相应的“数学模式”,为上升到更抽象的数学高度奠定了基础。然后又让学生运用模型解决问题,把数学化的东西又回归于生活,也让学生再一次体会数学与生活的密切联系。另一条线以渗透数学思想方法为线索。

  对于植树问题的探究,不仅仅让学生经过画线段图、摆学具的方式自主探究、寻找,并且结合线段图、摆学具,让学生理解了为什么两端都种时,棵数会比间隔数多1,多的1指的是哪一棵树。让学生不仅仅要知其然,还要知其所以然。

  由反复的修改,让我深刻地体会到了对教材研究的重要性,明白了“教师对教材看得有多深,才能使你的课堂有多厚”的道理。也让我明白了自我今后应当努力的方向。

  二、敢于放手让学生去探究,体现学生的主体地位。

  整堂课,我都比较注重学生的主体地位。因为我明白,仅有学生自我想学、愿学,才能主动地学,并把学到的东西内化为自我的知识。所以对于重点部分的引入,即探究两端都种时,棵数与间隔数之间究竟有什么关系,我先让学生经过自我的猜测得到答案。

  当几种答案产生冲突时,再引导学生探究,这样更容易激发学生的探究欲望,激活学生的主体意识。而后的探究部分我就放手让学生去做,教师给予适当的指导,让学生在自主探索中掌握用线段图探究植树问题规律的方法。由此把方法内化为自我的东西,为下节课自主寻找另外两种植树问题的规律时,学生就比较简便愉快了。

  三、注重教学思想的渗透和学习方法的传授。

  在整个教学的过程中,我都很注重数学思想方法的渗透。比如:当学生用一个线段图证明规律时,适时点拨。用一个线段图就能证明它是普遍存在的规律吗?再画几个试试(以小组为单位,分组研究)。交流时,让不一样的学生说出用不一样间隔的线段图得到同一个规律,实际就是向学生渗透不完全归纳法。在展示交流部分,经过比较10个间隔与2个间隔的线段图的难易,比较画一棵树和用一个点表示一棵树的难易,让学生体会简化的思想。经过找生活中的植树问题,并解决生活中的植树问题,让学生体会化归的思想。对于学习方法的传授,整节课都异常重视线段图的运用。

  当然,这节课也有许多的不足之处,列举几条:

  一、教学时间安排欠妥。有的教学资料没有来得及出示,有的资料讲解比较仓促。练习巩固时间不充分,没有检测时间,使教师没有及时掌握每个学生的学习情景,心中没底。

  二、本节课,我本想借助一一对应的思想去突破本节课的难点(两端都栽的情景下,所栽的棵数比间隔数多1),可是没有深入去理解植树问题中所蕴含的一一对应思想。所以,感觉得出的规律有些牵强、抽象,没有到达水到渠成的效果,没有把一一对应的思想与植树规律结合在一齐,没有很好地突破难点。

  三、对学生评价这块显得本事不足。对于学生的评价如何做到即准确又有深度,还要具有启发性,这是我还得努力学习的方向。

  四、数学课关键在于“说”,以说促思,以说引思,这样能够了解学生的思维过程是否正确,以便教师及时调控课堂,改变教学策略,可是,为了能够完成教学任务,明明白应当让学生多说,可是由于时间问题,就把学生说的权利剥夺了,而去进行下头的教学资料,这是我一贯的通病,我争取改正,把更多的时间和空间留给学生,让学生真正成为课堂的主人。

  总之,一堂课下来,发现自我真的还有那么多的不足之处。反思自我,今后还应加强学习,学习理论知识、学习优秀课例,异常应当针对自我的不足之处,运用于实际教学之中,逐步完善、改正。期望能经过自我一点一滴的积累和改善提高自我的业务水平和调控、处理课堂生成的本事,使自我能不断提高、不断发展。

  植树问题教学反思(二十五):

  《植树问题》是四年级数学广角的资料,对于孩子们来说属于拓展提升类知识,对于三年级孩子来说理解起来更会有困难。下头就几方面谈一谈我的设计意图:

  1、课堂中主要渗透了一一对应、化繁为简以及数形结合的数学思想,单纯的套用数量关系学习的知识则失去了它的持久性,要让学生在活动中深化数量关系,设计了数一数、画一画教学活动,这些活动都能帮忙学生积累活动经验。

  2、一一对应思想的渗透。在一一对应的思想上的,让学生体会并说出谁和谁为一组就是一一对应的体现,能够为学生接下来理解为什么多1、少1或相等打下良好的基础。

  3、在追问中感知数量关系。数量关系的生成要经历必须的数学活动经验,让学生摆一摆、数一数只能观察比较出两种物体的个数的`大小,继续追问:为什么+1,为什么—1?这样的追问是深化数量关系的有效前提。

  4、重视不一样情景的联系与区别。无论是植树问题还是间隔排列的两种物体,他们都有多种情景,而每一种情景都不是孤立存在的,规律之间的练习能够帮忙我们教学过程中有效进行延展,而他们之间的区别则能够帮忙学生加深每种情景本质的理解。

  5、体现应用意识。数学知识来源于生活也应用于生活,对于植树问题的理解要拓展到平常生活中,这样能引导学生运用规律或者获得的策略以及感悟的数学思想来解决与植树问题有着共同数学知识结构的实际问题。

  本节课的不足以及应改善的地方:

  1、把100米简单化到20米,仍然不够简单,对学生的理解题意造成了必须的困难。如果改成总长5米,间隔1米,会更好理解。

  2、讲解三类情景时,应以“只在一端”这种简单情景为例,重点讲解,降低学生学习难度。

  3、教态不够自然,语言表情亲和力不够,在平时教学中应加强锻炼,注意培养。

  每一次讲课对自我来说都是一次锻炼,都是一次提高的机会。备课、讲课、反思,每一步都需要用心去思考,思考的过程就是提高的过程,相信经过这样的一次次历练,自我会做的更好。

  植树问题教学反思(二十六):

  《植树问题》是新人教版小学五年级数学上册数学广角的资料。本节课是第一课时,是植树问题中比较简单的情景。教学目标和教学重点都是引导学生发现两端都栽时,棵数比间隔数多1,渗透化繁为简、一一对应的数学思想。教学难点是理解这一规律。

  为了突出重点,探究新知环节,我分了五个层次进行:第一个层次,同桌合作,模拟在20米的小路一旁植树的过程,思考棵数与什么有关;第二个层次,独立操作,模拟在25米的小路一旁植树的过程,感知棵数与间隔数的关系;第三个层次,根据前两次的经验,不操作,画线段图,探究在30米的小路一旁植树的情景,验证棵数与间隔数的关系;第四个层次,想象在35米的小路一旁植树,计算出要栽多少棵;第五个层次,观察比较,找出四个题目中的相同点。经过五个层次的教学,学生不难发现“间隔数+1=棵数”这一规律,同时渗透“化繁为简”这一重要数学方法。突破“理解这个规律”这一难点时,我提示:“植树问题能不能也看成是两种物体的一一间隔排列呢?”。

  在教师的引导下,学生思考后,自我说出用分组的方法,把每组中两种量一一对应起来。之后,教师因势利导,学生发现如果一组一组的分,正好分完,则数量相等;如果有剩余,则数量就是相差1,帮忙学生理解间隔数+1=棵数。从学生学习状态、课堂交流来看,到达了本节课的目标,实现本节课的预期目的。

  本节课的还有很多足之处:

  1、学生回答问题不准确,甚至出错,我觉得是教师组织语言不严密,问题的指向性模糊,备学生不太充分等多方面的原因造成的。学生有时一脸茫然,有时不知所措。

  2、课堂条理还需改善,有遗漏的环节,有强调不足的情景,也有不必要重复的话语。

  3、因担心时间超时,在教学过程中,不予理睬学生的答非所问,而急于得到只贴合教师想要的答案。

  有遗憾的课才是真实的课,才是更有价值的课。我会以每节课为起点,在需要努力的方面下功夫,需要改善的地方多揣摩,从一点一滴做起,使自我的课堂日趋完美,上得精彩,少留遗憾。

  植树问题教学反思(二十七):

  植树问题是十分生活化问题。其中包含两端都栽;只栽一端和两端都不栽,以及封闭图形的栽树。然而由此衍生出的锯木头,敲钟,上楼梯,以及汽车站点,公交车发车班次等问题是十分趣味的。

  在教学中,我尽可能引导学生,用图示法,看手法,以及站队法等直观方法帮忙理解,以促使孩子们学会分析问题的方法。同时在引导学生读题的过程中,对问题进行逐字逐句的分析,让孩子们理解总长,间距,间隔数等名词。同时在直观操作中理解,总长除以间距等于间隔数。经过站队,让孩子们清楚的看到,站队的人数总比间隔数多一,这属于两端都栽。同时经过画图,看手指和指间隔进一步理清间隔,间距,棵树之间的关系。

  对于封闭图形,我采用同学拉圆圈的形式,经过数人数和间隔数,发现规律。

  同时对于多边形栽树,端点都栽的问题,我让孩子们六人一组合作,能够站队,也能够画图来学习。孩子们学习兴趣极高,经过归纳汇报,收到了不错的效果。

  然而,还有一部分孩子,学习数学建模的方法有待进一步培养。一部分孩子不动脑,总是以旁观者的主角,等靠要,不主动学习,不自我分析,学习停留在背的模式,使得教学效果参差不齐。会学的学精,后进的只知皮毛。题目稍加变化,便无从下手。。针对以上问题,在今后的教学中,还应化大气力培养孩子们自觉学习,勤于思考的习惯,让他们找到正确的学习方法,仅有这样,学习才不会僵化。

  植树问题教学反思(二十八):

  本节课研究的只是两端都栽的植树问题。主要目标是向学生渗透一种思想,一种在数学上、在研究问题上都很重要的思想——化归思想。这种思想的渗透能很好地帮忙学生理解寻求解决复杂问题的一般方法,那就是从简单问题、简单事例入手,寻求规律,经过规律的得出,最终解决问题。

  教学上我采用“自主——互助”的策略,力求让学生依据自学提纲及要求,经过独立思考,把不明白的问题与他人交流合作,使学生在不断地操作和交流中,经历发现和感受的植树问题的过程。环节如下:

  一、经过课前活动,以大家都熟悉的上操站队为素材,让学生初步认识间隔,感知间隔数。

  二、以自研题为载体,实现全课教学重点及难点的突破。

  为此我设计分别在15米、20米、25米、30米的公路一边植树的问题,先让学生明确自学要求,然后根据要求独立研究与自我编号对应的一题,重点让学生经过画图栽栽看,发现一棵一棵种树,关键是要找准间隔数,在经历了从简单事例入手之后,各部分名称的实际意义已经得到了强化。

  与此同时,植树问题的一般解法也已经得到了归纳。然后用找到的规律去解例1中的在100米绿化带上植树的问题,使学生获得真实的学习体验的同时,也培养学生学习数学的兴趣。在这几个过程中,学生学到了解决问题的方法,同时也获得了更深层次的情感体验。

  三、多角度的应用练习,巩固学生对植树问题的理解,突出教学重点。

  四、经过达标检测活动,了解学生学习情景,为改善自我的教学和跟踪辅导供给有利的保障。

  五、评价总结,拓展延伸。经过出示不一样类型的植树问题,让学生近一步体会数学源于生活,数学就在我们身边,从而使学生深刻感受到数学的应用价值,激发学生学习数学的兴趣,也为下一节数学课做好铺垫。

  植树问题教学反思(二十九):

  植树问题”是人教版新课程标准实验教材五年级上册“数学广角”的一个新资料。教学中,首先要让学生区分出植树问题的三种类型。即所谓的“两端都种”“只种一端”(包括封闭图形)与“两端都不种”的三种情景。并将“三种情景”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”,要求学生牢固地掌握,从而能在应对新的类似问题时不假思索地直接加以应用。

  其次,要教给学生解题的'方法。不管什么植树问题,一般都是先求出有几个间隔。能够根据“路的长度间隔长度,间隔数”然后再根据植树问题的三种类型(“两端都种”“只种一端”(包括封闭图形)与“两端都不种”)去求出棵树。也能够根数告诉的棵树,用“加一”“不加不减”“减一”求出间隔数,再求出路的总长。

  其三,要让学生学会联系生活。把生活中的问题转化成植树问题。能够让学生找一找生活中的“植树问题”,很多同学联想到:公路两旁的路灯、公路中的斑马线、楼梯的台阶、栏杆的铁柱等都包含与“植树问题”相同的数量关系。让他们学会分析是植树问题中的哪种类型。然后能够利用“植树问题”的规律来解决它。课堂中能够结合教学资料,让学生利用所学找到规律进行解决,使他们的认知得到进一步的深化和提高,从而获得了学习数学的乐趣,到达了梦想的课堂教学效果。

  植树问题教学反思(三十):

  经过教师带领同学们去植树这一情境,之后出示ppt课件,让学生补充数学信息。让学生初步认识间隔,感知间隔数与棵数的关系。整节课以一道植树问题为载体,放手让学生自主学习,以三种不一样的植树方案引导学生合作探究植树问题。

  在教学中,让学生经过画图来解决,在画图过程中学生就会发现间隔数与棵数的关系。让学生在整理列表中学生们发现规律,验证规律、运用规律等活动,让学生经历数学模型的科学探究过程。在这节课中,然学生以画图为主线,以“数形结合、一一对应”的数学思想方法为暗线,让所有学生参与为载体,展开学习,实现“数学模型的多维构建。

  整节课上的有些前松后紧的感觉。以至于在解决问题中还有几道没有解决完。如果在探究三种栽树方法的规律时,再大胆的放手让学生自主的去探究,效果可能会更好些。

X

打赏支付方式:

加载中...